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1 Introduction

The standard way to measure performance of centralized online algorithms is to consider the
“competitive ratio” which is the worst-case performance ratio between online and optimum
offline algorithms on a specific input instance. In such algorithms decisions are made by global
controller, that has full information about past input. This model, pioneered by Sleator and
Tarjan [ST85] is used by most of the previous work in this area, e.g. [BBKT90, MMSS8S,
FKL*88, KP94].

In contrast, concurrent distributed algorithms are ones where decisions are made by in
a decentralized manner, i.e. each component of the system makes an independent decision,
and many new inputs can come simultaneously. This notion was introduced by Deng and
Papadimitriou [XP92, PY93] in context of one-shot multi-player games and by Awerbuch,
Kutten and Peleg [AKP92] in the context of dynamic job scheduling. In the context of
dynamically changing networks, such issues were analyzed by Awerbuch and Leighton [AL.94].
In the context of asynchronous memory systems, this was studied by Awerbuch and Azar
and Ajtai et el [AADWO94].

We comment that concurrent distributed directory is a central problem in maintaining
Virtual Shared memory in current parallel multiprocessor architectures [ALKKS88, CFKA90,
JLGS90, LEH85, LLG190]. Certainly, in these settings the issues of asynchronicity and
concurrency cannot be ignored.

Previously, distributed directory has only been considered in the setting where all the
operations occur in a serial order [BFR92]; direct applications of methods in [BFR92] in
concurrent setting lead to competitive ratio which grows lenearly with the number of network
noded.

The contributions of this paper are
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e definition of semantics and complexity measures for distributed data structure for
concurrent asynchrnous distributed directory access.

e implementation of concurrent asynchronous distributed directory supporting Insert’s
and Find’s with poly-logarithmic overhead using the techniques in [BFR92] with ad-
ditional synchronoization mechanismes.

2 Problem statement.

2.1 Network Model

Consider an asynchronous distributed a network described by an undirected graph G(V, E, w)
consting of nodes v, edges F, and positive edge weight function w. Messages sent over
network edges arrive within some finite yet undetermined time [Gal82, Awe85].

We assume the existence of a weight function w : £ — R, assigning an arbitrary positive
weight w(e) to each edge e € E. For two vertices v,u in a graph G let distq(v,u) denote
the (weighted) length of a shortest path in G between those vertices, i.e., the cost of the
cheapest path connecting them, where the cost of a path (eq,...,es5) is D 1cics w(e;). (We
usually omit the subscript ¢ where no confusion arises.) o

The communicaiton cost of a protocol is the total cost of all messages transmitted, where
each message can carry logarithmic number of bits, and cost of message transmission over
an edge e is the weight w(e) of that edges.

2.2 Semantics

The Basic Distributed Directory (BDD) is a distributed data structure supporting the op-
erations find and insert on dynamically growing set § of network nodes. The semantics
of these operations are

e find [node in the set v € §] [from arbitrary node v € V]: this operation, called from
some arbitrary node v € V should return name of a node u € S.

e insert [arbitrary node v € V to set §]: adds new node v to set S.

2.3 Complexity for serial executions

We defined the complexity measures as follows. Let F be the set of all find operations and
let ' € F be

The competitiveness of £ind operation is the ratio

" cost I
ratio = max
F FeF dist(F)

2
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the communication cost of that operation, divided by the distance from a new user to a
previous user or a source.

It is not difficult to implement such operations by “brute force”, namely broadcasting
search message thru the whole network in the case of Find, and/or broadcasting an update
thru the whole network in case of Insert or Delete. Another possibility is having a central
network controlller.

2.4 Complexity Measures (Distributed concurrent Competitive-
ness)

To model concurrent executions, we divide operations such as a Read or a Write opera-
tion into a sequence of atomic steps. A concurrent execution is just a sequence of atomic
steps where the atomic steps of concurrent operations are interleaved. The operations in a
concurrent execution « are atomic if the following condition holds. It must be possible to
associate each operation in « with a single point, called a serialization point, between the
first and the last atomic steps of the operation such that the responses of the operations in «
could be the responses if the operations in « were executed serially based on the serial order
implied by the serialization points. The serial order implied by the serialization points of
a concurrent executions is called the sertalization order. In general, a concurrent execution
can have many serialization orders. The serialization orders of a concurrent execution « are
denoted by s(«). [[[This section needs the appropriate references to past work.]]] [[[Perhaps
concepts such as well formedness should also be introduced.]]]

We are now ready to give a precise definition of the complexity measures that we use.

The cost of transmitting an arbitrary message from node v to node w is dist(v, u). [[[Note
that the cost may increase when the message contains a lot of data.]]]

Now consider an algorithm A that solves some problem P. Let « be an execution of A.
The costs incurred by execution «, denoted by cost(«), is the sum of the costs of all messages
sent in . Now consider any algorithm B that is not necessarily concurrent and that solves
P. For any serialization order v € s(«a), let costp(y) be the cost of the serial execution by
algorithm B of the operations in v in the order given by ~. Let opt(y) = ming{costp(v)}.
Now define opt(a) = maxyeqsa)(opt(y)) We say that opt(«) is the optimal cost of a. Now
we define the competitive factor of a algorithm A to be:

CF(A) = max (COSt(O‘)) .

a opt(«)

[[[The justification for this definition still needs to be written down.]]]
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3 Find, Copy, Delete, and Modify Primitives

This section introduces the algorithm, that implements the find and copy primitives. The
algorithm is distributed and concurrently competitive with a polylogarithmic competitive
factor. The algorithm is based on the regional covers defined in [?].

3.1 Preliminaries
3.1.1 Graph Theory

Next let us define some basic graph notation. The d-neighborhood of a vertex v € V' is defined
as Nq(v) = {u | dist(v,u) < d}. Given a subset of vertices R C V, denote N, (R) = { N (v) |
v € R}. Let D = Diam((G) denote the diameter of the network, i.e., maz, ,ev(dist(v,u)).
For a vertex v € V, let Rad(v,G) = max,ev(distg(v,u)). Let Rad(() denote the radius of
the network, i.e., min,ev(Rad(v,G)). A center of GG is any vertex v realizing the radius of (¢
(i.e., such that Rad(v, ) = Rad((G). In order to simplify some of the following definitions we
avoid problems arising from 0-diameter or 0-radius graphs, by defining Rad(G') = Diam(G) =
1 for the single-vertex graph G = ({v},0). Observe that for every graph G, Rad(G) <
Diam(G) < 2 Rad(G). (Again, in all of the above notations we usually omit the reference
to (G where no confusion arises.)

Finally, let us introduce some definitions concerning covers. Given a set of vertices
S CV, let G(S) denote the subgraph induced by S in GG. A cluster is a subset of vertices
S C V such that G(S5) is connected. We use Rad(v,S) (respectively, Rad(S), Diam(5))
as a shorthand for Rad(v,G(S)) (resp., Rad(G(S)), Diam(G(S))). A cover is a collection
of clusters § = {51,...,9,} such that J;S; = V. Given a collection of clusters §, let
Diam(8) = maz;(Diam(S;)) and Rad(S) = maz;(Rad(S;)). For every vertex v € V, let
degg(v) denote the degree of v in the hypergraph (V,S), i.e., the number of occurrences of v
in clusters S € S. The mazimum degree of a cover S is defined as A(S) = maz,ev(degg(v)).
Given two covers § = {51,...,5,} and T = {11,...,T;}, we say that T subsumes S if for
every S; € § there exists a T € 7 such that S; C T}.

3.1.2 Hierarchical Directories

The hierarchical directory is based on the concept of a m-regional covering. A m-regional
covering 7 is a covering with the following properties. Let dist(v,u) < m. Then there exists
a cluster T" € T such that v € T and v € T. An m-regional covering is constructed using
the following Theorem proved in [?].

Theorem 3.1 Given a graph G = (V, E), |V| =n, a cover S and any integer b > 1, it is
possible to construct a cover T that satisfies the following properties:

(1) T subsumes S,
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(2) Rad(T) < (2b—1) Rad(S), and
(3) A(T) = O] S['").

An m-regional covering is constructed by letting § = N, (V) and applying Theorem 3.1.
Based on the 2°-regional covering 7;, we define the regional directory RD;. Specifically, each
cluster in 7; designates one of its members a the cluster center. Now, the regional directory is
defined by the quantities write,[t], read,[t], and synch,[i], for each node v. In particular, the
set read,[t] consists of the cluster centers of clusters T' € 7; such that v € T, and write,[¢]
and synch,[i] are each the cluster centers of any cluster 7' € 7; such that Abii(v) C 7.
Intuitively, RD; can be view as a directory where registrations to the directory are recorded
at the cluster centers write,[i] and searches for registration are conduced by checking the
cluster centers in read,[i]. The construction of the clusters insures that a searching node
will find any registration of a node that is within distance 2°. The cluster center synch,[¢] is
used to synchronize concurrent search.

The following lemma bounds the number of synch [i] cluster centers of any neighborhood.

Lemma 3.2 Consider the neighborhood N, (v). Define x such that 2°=' < m < 2*. Now
H ={T|T = synch,[z] for any u € Ny, (v)}. Then |H| = O(bln|'/®).

Proof: Consider any node u € N, (v). Let synch,[x] be the cluster center of cluster T,.
Since Np(v) € T, and u € N, (v), we conclude that v € T,. The result now follows from
part 3 of Theorem 3.1. ]

Finally, the hierarchical directory consist of the set of regional directories RD; where
1 <0<,

3.1.3 Code Conventions

We use standard psuedocode with the following additional constructs. The construct at has
the semantics of a remote procedure all. The indented lines following the at w: construct are
executed at node w. The find then else construct is similar to the if then else construct. In
particular, if the find command is successful, the then commands are executed, otherwise the
else commands are executed. The wait until command, waits until the specified condition
is satisfied. The waiting operation must be allowed to proceed before the condition has a
chance to change in such a way that it is no longer satisfied.

There are several notational conventions. A variable that is subscripted by a node name,
v, is a static variable that can be accessed by any operation executing at node v. Variables
without subscripts are local to the operations. Finally, the atomic steps of our concurrent
operations are specified as follows. Any sequence of commands is atomic until it reaches a
wait until command where the condition is false or a command that requires the sending
of a message.
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3.2 Find

The £ind operation uses the hierarchical directory to locate a node that is currently registered
in the hierarchical directory. The operation return the name of such a node. This section
explains the code for the find operation given in Figure 1. The inherent cost of a find
operation is the weighted distance to the closest registered node.

The operation proceeds by searching each level of the hierarchical directory, i.e. each
regional directory RD;, in increasing order from 1 to 6. At level ¢ the code for say node v
checks the cluster centers in read,[¢] for current registrations. Such a registration is found if
the find command is successful at one of the cluster centers, i.e. at cluster center w, find
returns a P, € ptrset,[].

The code maintains the following invariant, If nodes v and u are concurrently executing
find operations with mode = insert and synch, [i] = synch,[i], only one of the two nodes
will search a regional directory RD; where j > ¢. The invariant is ensured by the code block
that succeeds the two phase search of RD;. Specifically node v checks with the cluster center
synch,[i] to see if there are any concurrent searches pending. If so, searching # nil, and
v is added to the set synchset. Otherwise searching is set to v so that subsequent queries
to synch,[¢] will find searching # nil. If node v is added to the set synchset, node v does
not search any of the higher regional directories. Rather, if searching = w, it waits until w,
upon completing its insert operation, deletes v from the set synchset. In this case the find
operation at v will return w.

3.3 Copy

The copy operation executed at node v inserts node v into the hierarchical directory. Once
inserted node v can be returned as the result of a find operation. This section describes the
code or the copy operation give in Figure 2. The inherent cost of a copy operation operation
is the weighted distance to the the closest registered node.

The copy operation is best understood by first describing the concept of a coverset. A
coverset is maintained for each regional directory. Consider the coverset for regional directory
RD;. It consists of a forest with the following properties. If v is the root of a tree in the
forest, then v is registered at the cluster center write,[¢]. Furthermore, the weighted depth
of each tree is at most 2!, If node v is in the coverset for RD;, its parent id given by
parent, [t] and its children are contained in the set ptrset [i]. The actual elements of the set
ptrset[i] are structures with the fields node, which gives the name of the child, and dist
which gives the weighted distance between v and the child.

The copy operation at node v begins with a find, operation to locate a node from which
the data copy will occur. Once such a node, say u, is found, the addCoverSet operation
is executed. This operation attaches v to the coversets at each of the levels. addCoverSet
attaches v to the coversets one level at a time. Consider the coverset for regional directory
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RD;. Node v chooses the node, node, returned by the find operation as its parent in the
coverset, sets parent,[i] = node and adds itself to the child set pirset][i] maintained at its
parent. Next, v checks the weighted depth of the tree to which it has just attached. The
depth of the tree is given by the variable ¢,[i]. If the depth is greater than 2! —2 a scanback
operation is initiated. The scanback operation walks the tree toward the root decrementing
the ¢,[i] variable by 2° at each node. Once the ¢,[i] variable at some node, say w, is less
than or equal to 0, the subtree rooted at that node is detached from its current tree and
registered at the cluster center write,,[¢].

Next, the copy operation contacts the cluster center synch [i] in each RD; up to level
level to signal the completion of the copy operation to nodes that are waiting.

3.4 Correctness

Lemma 3.3 In any concurrent execution o of £c, each £ind and copy operation terminates
successfully.

Proof: ]

3.5 Complexity

We now consider the complexity of the algorithm.
Let « be a concurrent execution consisting only of copy operations. In this case a is said
to be a copy-execution.

Lemma 3.4 Let o be a copy-execution. Let v € V execute a copy operation in « and let
the £ind operation executed by v’s copy operation return the pair (node,, level,). Then there
are at most O(b|n|""*) nodes u € Nyever, (v) such that u executes a copy operation in a and
the £ind operation executed by u’s copy operation returns the pair (node,, level,) such that
level,, > level,,.

Proof: This is a simple counting argument that makes use of Lemma 3.2 and the synchro-
nization that the code does using the synch nodes. |

Lemma 3.5 Let a be a copy-execution. Let the initial state of o, first(a), contain one data
copy at node v(a). Then cost(a) = O((b|n]"/*)2(2b — 1)) H(n) opt(a) for any b such that
1<b<n.

Proof: Let v € V execute a copy operation in « and let the find operation executed by
v’s copy operation return the pair (node,, level, ). Let a = level,. The cost associated with
v’s copy operation in « is the following:

Zx: (4 cost(v,synch,[i]) + > (4 cost(v, w))) + 2 cost(v, node,).

=1 weread [

7
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The first term covers the cost arising from the communication with the cluster centers in
read,[t] and synch,[t] while the second term covers the cost of actually copying the data from
node node, to node v. [[[Missing from the expression is the cost of updating the coversets
and the additional cost arising from the fact that the amount of data copied from node node,
to node v may be large. Both of these things are easy to add and to not change the order
of the expression. I just have not developed the correct notation yet.|]] Using conditions 2
and 3 of Theorem 3.1 we can bound the expression in the outer sum by O(b|n|"/*(2b — 1))2".
The second term is bounded by O(2b — 1)2%. The cost associated with the copy operation
by v in « can now be expressed as follows:

cost(v) = f:()(b|n|1/b(2z)—1))2@0(25—1)290

= O(bn|"*(2b — 1)) f:zi +0(2b—1)2"

=1

= O(bln]"*(2b — 1))2°.

In order to establish our competitive result, we now must relate cost(v) with the optimal
cost for «, opt(alpha). Let S,(a) be the subset of nodes executing a copy operation in
a with the following property. If u € S,(a) and the find operations executed by u’s
copy operation returned (node,,level,), then level, > x. First consider the case where
|S,(a)] = O(b|n|'"*) > 0. The case |S,(a)| —O(b|n|'/*) < 0 is discussed later. By Lemma 3.4,
1S, () N Naw(v)] = O(b|n|'/?). This shows that there are at least |S,(a)| —O(b|n|"/*) elements
of S, that are 2°~! separated from v, i.e., there are |S,(a)| — O(b|n|'/*) elements u € S, ()

such that dist(u,v) > 2*. Now consider any node u that is 2*~! separated from v and repeat

[So (o]
O(bln]' 1)

the same argument. In this way we show that there are at least | | elements of S5,

that are 277! separated.
Now let S(«) be the set of nodes that execute a copy operation in a. It is easy to see
that opt(a) > MSTa({v(a)} U S(«)). Now we can conclude that:

[Su(@)]

277! LWJ < MSTe({v(a)} U S(@)) < opt(a).

0(b|n|1/b)w
[Su(@)]

= 2" <2opt(a)]
Using this result we can now conclude that

cost(v) = O(bn|"?(2b —1))27

|1/t
= O(bln|"*(2b = 1)) opt(a) (%1

8
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Note that the above equation only holds when |S,(a)| — O(b|n|'/*) > 0. Now define S(a) C
S(a) such that u € S'() iff |S,(a)] — O(b|n|'/*) > 0. Now the cost of the copy operations
for all node in S’(«), cost(S'(«)), is given by the following:

|1/t
cost(S'(a)) = Z% )0 (bln['/*(2b— 1)) opt(a )(%1
— O((bln[V*)2(2b — 1)) opt(a ; |SU o]

= O((Blnl"*)*(2b = 1)) H(n) opt(ar).

Finally, consider the case where | S, ()| — O(b|n|"/*) < 0. Let S”"(a) = S(a) — 5'(a). Let
u € S”(a) be the node such that level,, > level,, for all w € S”(«). Then it is easy to show

cost(S"(a)) = cost(u)]S"(a)]
= cost(u)O(b|n|"?)
= O(bln[""(2b— 1)) opt(c)O(bln|""")
= O((bln]'*)*(20 — 1)) opt(a).

Finally, we conclude that

cost(a) = cost(S"(a)) + cost(S" () = O((b|n|*)2(2b — 1)) H(n) opt(a).

4 The Code
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find,()

node := nil; 1 := 0
repeat
=174+ 1

\* The i-level directory search, phase 1 *\
forall w € read,[t]

at w: find v € pirset,, then node :=u
until node # nil

\* Synchronize before moving to ¢« + 1-level directory search *\
if node = nil then
w := synch,[i]
at w: if searching, [i] # nil
then node := searching,|i|
synchset,, := synchset,, U{v}
wait until v & synchset
else if status, = insertpending then searching,, == v

until node # nil
return (node, 1)

Figure 1: Code for find,.

copy, ()
status, := insertpending
(node, level) = £ind, ()
copyData(node)
addCoverSet(node)

\* Inform waiting node of insert completion *\
forall 7 :=1 to level
w := synch,[i]
at w: searching,, = nil
synchset,, =)

Figure 2: Code for copy,.
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