
www.manaraa.com

Competitive Concurrent Distributed DataStructures(Draft: Do not distribute)Baruch Awerbuch Yair Bartal Amos Fiat Rainer GawlickNovember 29, 19941 IntroductionThe standard way to measure performance of centralized online algorithms is to consider the\competitive ratio" which is the worst-case performance ratio between online and optimumo�ine algorithms on a speci�c input instance. In such algorithms decisions are made by globalcontroller, that has full information about past input. This model, pioneered by Sleator andTarjan [ST85] is used by most of the previous work in this area, e.g. [BBK+90, MMS88,FKL+88, KP94].In contrast, concurrent distributed algorithms are ones where decisions are made by ina decentralized manner, i.e. each component of the system makes an independent decision,and many new inputs can come simultaneously. This notion was introduced by Deng andPapadimitriou [XP92, PY93] in context of one-shot multi-player games and by Awerbuch,Kutten and Peleg [AKP92] in the context of dynamic job scheduling. In the context ofdynamically changing networks, such issues were analyzed by Awerbuch and Leighton [AL94].In the context of asynchronous memory systems, this was studied by Awerbuch and Azarand Ajtai et el [AADW94].We comment that concurrent distributed directory is a central problem in maintainingVirtual Shared memory in current parallel multiprocessor architectures [ALKK88, CFKA90,JLGS90, LEH85, LLG+90]. Certainly, in these settings the issues of asynchronicity andconcurrency cannot be ignored.Previously, distributed directory has only been considered in the setting where all theoperations occur in a serial order [BFR92]; direct applications of methods in [BFR92] inconcurrent setting lead to competitive ratio which grows lenearly with the number of networknoded.The contributions of this paper are 1

www.manaraa.com

� de�nition of semantics and complexity measures for distributed data structure forconcurrent asynchrnous distributed directory access.� implementation of concurrent asynchronous distributed directory supporting Insert'sand Find's with poly-logarithmic overhead using the techniques in [BFR92] with ad-ditional synchronoization mechanisms.2 Problem statement.2.1 Network ModelConsider an asynchronous distributed a network described by an undirected graph G(V;E;w)consting of nodes v, edges E, and positive edge weight function w. Messages sent overnetwork edges arrive within some �nite yet undetermined time [Gal82, Awe85].We assume the existence of a weight function w : E !R+, assigning an arbitrary positiveweight w(e) to each edge e 2 E. For two vertices v; u in a graph G let distG(v; u) denotethe (weighted) length of a shortest path in G between those vertices, i.e., the cost of thecheapest path connecting them, where the cost of a path (e1; : : : ; es) is P1�i�s w(ei). (Weusually omit the subscript G where no confusion arises.)The communicaiton cost of a protocol is the total cost of all messages transmitted, whereeach message can carry logarithmic number of bits, and cost of message transmission overan edge e is the weight w (e) of that edges.2.2 SemanticsThe Basic Distributed Directory (BDD) is a distributed data structure supporting the op-erations find and insert on dynamically growing set S of network nodes. The semanticsof these operations are� find [node in the set u 2 S] [from arbitrary node v 2 V]: this operation, called fromsome arbitrary node v 2 V should return name of a node u 2 S.� insert [arbitrary node v 2 V to set S]: adds new node v to set S.2.3 Complexity for serial executionsWe de�ned the complexity measures as follows. Let F be the set of all �nd operations andlet F 2 F beThe competitiveness of find operation is the ratioratioF = maxF2F cost Fdist(F)2

www.manaraa.com

the communication cost of that operation, divided by the distance from a new user to aprevious user or a source.It is not di�cult to implement such operations by \brute force", namely broadcastingsearch message thru the whole network in the case of Find, and/or broadcasting an updatethru the whole network in case of Insert or Delete. Another possibility is having a centralnetwork controlller.2.4 Complexity Measures (Distributed concurrent Competitive-ness)To model concurrent executions, we divide operations such as a Read or a Write opera-tion into a sequence of atomic steps. A concurrent execution is just a sequence of atomicsteps where the atomic steps of concurrent operations are interleaved. The operations in aconcurrent execution � are atomic if the following condition holds. It must be possible toassociate each operation in � with a single point, called a serialization point, between the�rst and the last atomic steps of the operation such that the responses of the operations in �could be the responses if the operations in � were executed serially based on the serial orderimplied by the serialization points. The serial order implied by the serialization points ofa concurrent executions is called the serialization order. In general, a concurrent executioncan have many serialization orders. The serialization orders of a concurrent execution � aredenoted by s(�). [[[This section needs the appropriate references to past work.]]] [[[Perhapsconcepts such as well formedness should also be introduced.]]]We are now ready to give a precise de�nition of the complexity measures that we use.The cost of transmitting an arbitrary message from node v to node u is dist(v; u). [[[Notethat the cost may increase when the message contains a lot of data.]]]Now consider an algorithm A that solves some problem P . Let � be an execution of A.The costs incurred by execution �, denoted by cost(�), is the sum of the costs of all messagessent in �. Now consider any algorithm B that is not necessarily concurrent and that solvesP . For any serialization order 2 s(�), let costB() be the cost of the serial execution byalgorithm B of the operations in in the order given by . Let opt() = minBfcostB()g.Now de�ne opt(�) = max2s(�)(opt()) We say that opt(�) is the optimal cost of �. Nowwe de�ne the competitive factor of a algorithm A to be:CF (A) = max� cost(�)opt(�) ! :[[[The justi�cation for this de�nition still needs to be written down.]]]3

www.manaraa.com

3 Find, Copy, Delete, and Modify PrimitivesThis section introduces the algorithm, that implements the find and copy primitives. Thealgorithm is distributed and concurrently competitive with a polylogarithmic competitivefactor. The algorithm is based on the regional covers de�ned in [?].3.1 Preliminaries3.1.1 Graph TheoryNext let us de�ne some basic graph notation. The d-neighborhood of a vertex v 2 V is de�nedas Nd(v) = fu j dist(v; u) � dg: Given a subset of verticesR � V , denote Nm(R) = fNm(v) jv 2 Rg. Let D = Diam(G) denote the diameter of the network, i.e., max v;u2V (dist(v; u)).For a vertex v 2 V , let Rad(v;G) = max v2V (distG(v; u)): Let Rad(G) denote the radius ofthe network, i.e., minv2V (Rad(v;G)). A center of G is any vertex v realizing the radius of G(i.e., such that Rad(v;G) = Rad(G). In order to simplify some of the following de�nitions weavoid problems arising from 0-diameter or 0-radius graphs, by de�ning Rad(G) = Diam(G) =1 for the single-vertex graph G = (fvg; ;). Observe that for every graph G, Rad(G) �Diam(G) � 2Rad(G). (Again, in all of the above notations we usually omit the referenceto G where no confusion arises.)Finally, let us introduce some de�nitions concerning covers. Given a set of verticesS � V , let G(S) denote the subgraph induced by S in G. A cluster is a subset of verticesS � V such that G(S) is connected. We use Rad(v; S) (respectively, Rad(S), Diam(S))as a shorthand for Rad(v;G(S)) (resp., Rad(G(S)), Diam(G(S))). A cover is a collectionof clusters S = fS1; : : : ; Smg such that Si Si = V . Given a collection of clusters S, letDiam(S) = max i(Diam(Si)) and Rad(S) = max i(Rad(Si)). For every vertex v 2 V , letdegS(v) denote the degree of v in the hypergraph (V;S), i.e., the number of occurrences of vin clusters S 2 S. The maximum degree of a cover S is de�ned as �(S) = max v2V (degS(v)).Given two covers S = fS1; : : : ; Smg and T = fT1; : : : ; Tkg, we say that T subsumes S if forevery Si 2 S there exists a Tj 2 T such that Si � Tj.3.1.2 Hierarchical DirectoriesThe hierarchical directory is based on the concept of a m-regional covering. A m-regionalcovering T is a covering with the following properties. Let dist(v; u) � m. Then there existsa cluster T 2 T such that v 2 T and u 2 T . An m-regional covering is constructed usingthe following Theorem proved in [?].Theorem 3.1 Given a graph G = (V;E), jV j = n, a cover S and any integer b � 1, it ispossible to construct a cover T that satis�es the following properties:(1) T subsumes S, 4

www.manaraa.com

(2) Rad(T) � (2b� 1)Rad(S), and(3) �(T) = O(bj S j1=b).An m-regional covering is constructed by letting S = Nm(V) and applying Theorem 3.1.Based on the 2i-regional covering Ti, we de�ne the regional directory RDi. Speci�cally, eachcluster in Ti designates one of its members a the cluster center. Now, the regional directory isde�ned by the quantities writev[i], readv[i], and synchv[i], for each node v. In particular, theset readv[i] consists of the cluster centers of clusters T 2 Ti such that v 2 T , and writev[i]and synchv[i] are each the cluster centers of any cluster T 2 Ti such that N2i+1(v) � T .Intuitively,RDi can be view as a directory where registrations to the directory are recordedat the cluster centers writev[i] and searches for registration are conduced by checking thecluster centers in readv[i]. The construction of the clusters insures that a searching nodewill �nd any registration of a node that is within distance 2i. The cluster center synchv[i] isused to synchronize concurrent search.The following lemma bounds the number of synchv[i] cluster centers of any neighborhood.Lemma 3.2 Consider the neighborhood Nm(v). De�ne x such that 2x�1 � m � 2x. NowH = fT j T = synchu[x] for any u 2 Nm(v)g. Then jHj = O(bjnj1=b).Proof: Consider any node u 2 Nm(v). Let synchu[x] be the cluster center of cluster Tu.Since Nm(v) � Tu and u 2 Nm(v), we conclude that v 2 Tu. The result now follows frompart 3 of Theorem 3.1.Finally, the hierarchical directory consist of the set of regional directories RDi where1 � i � �.3.1.3 Code ConventionsWe use standard psuedocode with the following additional constructs. The construct at hasthe semantics of a remote procedure all. The indented lines following the at w: construct areexecuted at node w. The �nd then else construct is similar to the if then else construct. Inparticular, if the �nd command is successful, the then commands are executed, otherwise theelse commands are executed. The wait until command, waits until the speci�ed conditionis satis�ed. The waiting operation must be allowed to proceed before the condition has achance to change in such a way that it is no longer satis�ed.There are several notational conventions. A variable that is subscripted by a node name,v, is a static variable that can be accessed by any operation executing at node v. Variableswithout subscripts are local to the operations. Finally, the atomic steps of our concurrentoperations are speci�ed as follows. Any sequence of commands is atomic until it reaches await until command where the condition is false or a command that requires the sendingof a message. 5

www.manaraa.com

3.2 FindThe find operation uses the hierarchical directory to locate a node that is currently registeredin the hierarchical directory. The operation return the name of such a node. This sectionexplains the code for the find operation given in Figure 1. The inherent cost of a findoperation is the weighted distance to the closest registered node.The operation proceeds by searching each level of the hierarchical directory, i.e. eachregional directory RDi, in increasing order from 1 to �. At level i the code for say node vchecks the cluster centers in readv[i] for current registrations. Such a registration is found ifthe �nd command is successful at one of the cluster centers, i.e. at cluster center w, �ndreturns a Pw 2 ptrsetw[i].The code maintains the following invariant, If nodes v and u are concurrently executingfind operations with mode = insert and synchv[i] = synchu[i], only one of the two nodeswill search a regional directory RDj where j > i. The invariant is ensured by the code blockthat succeeds the two phase search of RDi. Speci�cally node v checks with the cluster centersynchv[i] to see if there are any concurrent searches pending. If so, searching 6= nil , andv is added to the set synchset . Otherwise searching is set to v so that subsequent queriesto synchv[i] will �nd searching 6= nil . If node v is added to the set synchset , node v doesnot search any of the higher regional directories. Rather, if searching = w, it waits until w,upon completing its insert operation, deletes v from the set synchset . In this case the findoperation at v will return w.3.3 CopyThe copy operation executed at node v inserts node v into the hierarchical directory. Onceinserted node v can be returned as the result of a find operation. This section describes thecode or the copy operation give in Figure 2. The inherent cost of a copy operation operationis the weighted distance to the the closest registered node.The copy operation is best understood by �rst describing the concept of a coverset. Acoverset is maintained for each regional directory. Consider the coverset for regional directoryRDi. It consists of a forest with the following properties. If v is the root of a tree in theforest, then v is registered at the cluster center writev[i]. Furthermore, the weighted depthof each tree is at most 2i+1. If node v is in the coverset for RDi, its parent id given byparentv[i] and its children are contained in the set ptrsetv[i]. The actual elements of the setptrsetv[i] are structures with the �elds node, which gives the name of the child, and distwhich gives the weighted distance between v and the child.The copy operation at node v begins with a findv operation to locate a node from whichthe data copy will occur. Once such a node, say u, is found, the addCoverSet operationis executed. This operation attaches v to the coversets at each of the levels. addCoverSetattaches v to the coversets one level at a time. Consider the coverset for regional directory6

www.manaraa.com

RDi. Node v chooses the node, node, returned by the find operation as its parent in thecoverset, sets parentv[i] = node and adds itself to the child set ptrset [i] maintained at itsparent. Next, v checks the weighted depth of the tree to which it has just attached. Thedepth of the tree is given by the variable cv[i]. If the depth is greater than 2i+1�2 a scanbackoperation is initiated. The scanback operation walks the tree toward the root decrementingthe cv[i] variable by 2i at each node. Once the cv[i] variable at some node, say w, is lessthan or equal to 0, the subtree rooted at that node is detached from its current tree andregistered at the cluster center writew[i].Next, the copy operation contacts the cluster center synchv[i] in each RDi up to levellevel to signal the completion of the copy operation to nodes that are waiting.3.4 CorrectnessLemma 3.3 In any concurrent execution � of fc, each find and copy operation terminatessuccessfully.Proof:3.5 ComplexityWe now consider the complexity of the algorithm.Let � be a concurrent execution consisting only of copy operations. In this case � is saidto be a copy-execution.Lemma 3.4 Let � be a copy-execution. Let v 2 V execute a copy operation in � and letthe find operation executed by v's copy operation return the pair (nodev; level v). Then thereare at most O(bjnj1=b) nodes u 2 N2levelv (v) such that u executes a copy operation in � andthe find operation executed by u's copy operation returns the pair (nodeu; level u) such thatlevel u � level v.Proof: This is a simple counting argument that makes use of Lemma 3.2 and the synchro-nization that the code does using the synch nodes.Lemma 3.5 Let � be a copy-execution. Let the initial state of �, �rst(�), contain one datacopy at node v(�). Then cost(�) = O((bjnj1=b)2(2b � 1))H(n) opt(�) for any b such that1 � b � n.Proof: Let v 2 V execute a copy operation in � and let the find operation executed byv's copy operation return the pair (nodev; level v). Let x = level v. The cost associated withv's copy operation in � is the following:xXi=10@4 cost(v; synchv[i]) + Xw2read v[i](4 cost(v;w))1A+ 2 cost(v;nodev):7

www.manaraa.com

The �rst term covers the cost arising from the communication with the cluster centers inreadv[i] and synchv[i] while the second term covers the cost of actually copying the data fromnode nodev to node v. [[[Missing from the expression is the cost of updating the coversetsand the additional cost arising from the fact that the amount of data copied from node nodevto node v may be large. Both of these things are easy to add and to not change the orderof the expression. I just have not developed the correct notation yet.]]] Using conditions 2and 3 of Theorem 3.1 we can bound the expression in the outer sum by O(bjnj1=b(2b� 1))2i.The second term is bounded by O(2b � 1)2x. The cost associated with the copy operationby v in � can now be expressed as follows:cost(v) = xXi=1O(bjnj1=b(2b� 1))2i +O(2b� 1)2x= O(bjnj1=b(2b � 1)) xXi=1 2i +O(2b � 1)2x= O(bjnj1=b(2b � 1))2x:In order to establish our competitive result, we now must relate cost(v) with the optimalcost for �, opt(alpha). Let Sv(�) be the subset of nodes executing a copy operation in� with the following property. If u 2 Sv(�) and the find operations executed by u'scopy operation returned (nodeu; level u), then level u � x. First consider the case wherejSv(�)j�O(bjnj1=b) � 0. The case jSv(�)j�O(bjnj1=b) < 0 is discussed later. By Lemma 3.4,jSv(�)\N2x(v)j = O(bjnj1=b). This shows that there are at least jSv(�)j�O(bjnj1=b) elementsof Sv that are 2x�1 separated from v, i.e., there are jSv(�)j �O(bjnj1=b) elements u 2 Sv(�)such that dist(u; v) � 2x. Now consider any node u that is 2x�1 separated from v and repeatthe same argument. In this way we show that there are at least b jSv(�)jO(bjnj1=b)c elements of Svthat are 2x�1 separated.Now let S(�) be the set of nodes that execute a copy operation in �. It is easy to seethat opt(�) �MSTG(fv(�)g [S(�)). Now we can conclude that:2x�1b jSv(�)jO(bjnj1=b)c �MSTG(fv(�)g [S(�)) � opt(�):) 2x � 2 opt (�)dO(bjnj1=b)jSv(�)j eUsing this result we can now conclude thatcost(v) = O(bjnj1=b(2b � 1))2x= O(bjnj1=b(2b � 1)) opt (�)dO(bjnj1=b)jSv(�)j e8

www.manaraa.com

Note that the above equation only holds when jSv(�)j �O(bjnj1=b) � 0. Now de�ne S 0(�) �S(�) such that u 2 S 0(�) i� jSu(�)j � O(bjnj1=b) � 0. Now the cost of the copy operationsfor all node in S 0(�), cost(S 0(�)), is given by the following:cost(S 0(�)) = Xv2S0(�)O(bjnj1=b(2b� 1)) opt(�)dO(bjnj1=b)jSv(�)j e= O((bjnj1=b)2(2b� 1)) opt(�) Xv2S0(�) 1jSv(�)j= O((bjnj1=b)2(2b� 1))H(n) opt(�):Finally, consider the case where jSv(�)j �O(bjnj1=b) < 0. Let S 00(�) = S(�)�S 0(�). Letu 2 S 00(�) be the node such that level u � level w for all w 2 S 00(�). Then it is easy to showcost(S 00(�)) = cost(u)jS 00(�)j= cost(u)O(bjnj1=b)= O(bjnj1=b(2b� 1)) opt(�)O(bjnj1=b)= O((bjnj1=b)2(2b � 1)) opt (�):Finally, we conclude thatcost(�) = cost(S 0(�)) + cost(S 00(�)) = O((bjnj1=b)2(2b � 1))H(n) opt(�):4 The CodeReferences[AADW94] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive analysisfor distributed algorithms. Proc. 35th IEEE Symp. on Found. of Comp. Science,1994.[AKP92] Baruch Awerbuch, Shay Kutten, and David Peleg. Online load balancing in adistributed network. In Proc. 24th ACM Symp. on Theory of Computing, pages571{580, 1992.[AL94] Baruch Awerbuch and Tom Leighton. Improved approximation algorithms forthe multicommodity ow problem and local competitive routing in dynamicnetworks. In Proc. 26th ACM Symp. on Theory of Computing, May 1994.9

www.manaraa.com

findv()node := nil ; i := 0repeati := i+ 1n* The i-level directory search, phase 1 *nforall w 2 readv[i]at w: �nd u 2 ptrsetw then node := uuntil node 6= niln* Synchronize before moving to i+ 1-level directory search *nif node = nil thenw := synchv[i]at w: if searchingw[i] 6= nilthen node := searchingw[i]synchsetw := synchsetw [fvgwait until v 62 synchsetwelse if statusv = insertpending then searchingw := vuntil node 6= nilreturn (node; i) Figure 1: Code for findv.copyv()statusv := insertpending(node; level) = findv()copyData(node)addCoverSet(node)n* Inform waiting node of insert completion *nforall i := 1 to levelw := synchv[i]at w: searchingw = nilsynchsetw := ;Figure 2: Code for copyv.10

www.manaraa.com

[ALKK88] Anant Aggarwal, Beng-Long Lim, David Kranz, and John Kubiatowicz. Evalu-ation of directory schemes for cache coherence. In Proceedings of 15th Interna-tional Symposium on Computer Architecture, New York, jun 1988. IEEE.[Awe85] Baruch Awerbuch. Complexity of network synchronization. J. of the ACM,32(4):804{823, October 1985.[BBK+90] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On thepower of randomization in online algorithms. In Proc.of the 22nd Ann. ACMSymp. on Theory of Computing, pages 379{386, may 1990.[BFR92] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for dis-tributed data management. In Proc. 24th ACM Symp. on Theory of Computing,pages 39{50, 1992.[CFKA90] David Chaiken, Craig Fields, KiyoshiKurihara, and Anant Aggarwal. Directory-based cache-coherence in large-scale multiprocessors. In IEEE Computer, vol-ume 23, pages 41{58, jun 1990. number 6.[FKL+88] Amos Fiat, Richard Karp, Michael Luby, Lyle McGeoch, Daniel Sleator, andNeal E. Young. Competitive paging algorithms. unpublished, 1988.[Gal82] Robert G. Gallager. Distributed minimum hop algorithms. Technical ReportLIDS-P-1175, MIT, Lab. for Information and Decision Systems, January 1982.[JLGS90] David James, Anthony Laundrie, Stein Gjessing, and Gurindar S. Sohi.Distributed-directory scheme: Scalable coherent interface. IEEE Computer,pages 74{77, jun 1990.[KP94] Elias Koutsoupias and Christos Papadimitriou. On the k{server conjecture. InProc. 26th ACM Symp. on Theory of Computing, May 1994.[LEH85] K.A. Lantz, J.L. Edigho�er, and B.L. Histon. Towards a universal directoryservice. In Proceedings of 4th PODC, pages 261{271, Calgary, Alberta, Canada,August 1985.[LLG+90] L. Lenoski, J. Laundo, K. Gharachorloo, A. Gupta, and J.Hennessy. Thedirectory-based cache coherence protocol for the dash multiprocessor. In Proc.of 17th Intern. Symp. on Computer Architecture, pages 148{159, 1990.[MMS88] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms oron-line problems. In Proc. 20th ACM Symp. on Theory of Computing, pages322{333. ACM SIGACT, ACM, May 1988.11

www.manaraa.com

[PY93] Christos Papadimitriou and Mihalis Yannakakis. Linear programming withoutthe matrix. In Proc. 25th ACM Symp. on Theory of Computing, May 1993.[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized e�ciency of list update andpaging rules. Comm. of the ACM, 28(2):202{208, 1985.[XP92] X.Deng and Christos Papadimitriou. On the value of information. In Proceedingsof the 12th IFIPS Congress, Madrid. Also, in Proceedings of the World EconomicCongress, Moscow, 1992., 1992.

12

